
Testing Boltzmann's ergodic hypothesis with electron gas models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 4651

(http://iopscience.iop.org/0305-4470/39/17/S52)

Download details:

IP Address: 171.66.16.104

The article was downloaded on 03/06/2010 at 04:25

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/17
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 4651–4658 doi:10.1088/0305-4470/39/17/S52

Testing Boltzmann’s ergodic hypothesis with electron
gas models*

M Howard Lee

Physics Department, University of Georgia, Athens, GA 30602, USA1

and
Korea Institute for Advanced Study, Seoul 130-012, Korea

E-mail: mhlee@uga.edu

Received 30 August 2005, in final form 14 November 2005
Published 7 April 2006
Online at stacks.iop.org/JPhysA/39/4651

Abstract
Kubo proposed a physical approach to proving the validity of Boltzmann’s
ergodic hypothesis. It is to perform the time averages on dynamical functions,
thereby avoiding the difficulties of measure theory inherent in the classical
approach. To perform time averaging properly, one must have a general
solution for the Heisenberg equation of motion such as by the recurrence
relations method. A time averaging carried over with a recurrence relations
solution is found to yield an ergodic condition in the form of an infinite product.
It is linked to the energy transfer mechanisms, hence to the ergodicity itself. The
electron gas models are fertile ground for testing ergodicity by this approach.
For several static domains, we have evaluated the infinite product and drawn
from them a general physical picture that underlies the ergodic hypothesis.

PACS numbers: 05.40.−a, 05.60.−k

1. Introduction

To be sure, Boltzmann’s ergodic hypothesis is profound [1]. Evidently, he must have been
the first to attempt to prove its validity. Seen today, more than a hundred years later, one is
tempted to say that he should have approached it by performing time averages. Boltzmann
instead suggested another idea. If successfully implemented, one could suppose that it would
be equivalent to performing time averages. This turns out to be a very difficult task, a study
which has come to be known as ergodic theory, then quasi ergodic theory, in mathematics
[2]. The resulting studies perforce have become remote from the physical origin. It seems
unlikely that ergodic or quasi ergodic theory could ever say whether the thermodynamic limit
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or irreversibility is a necessary and sufficient condition for ergodicity, or more specifically,
what makes a model ergodic or how can a model be ergodic with respect to one variable but
not with respect to another. The problem is, in Dorfman’s words [3], ‘still unsolved’.

So why not perform the time averages in the first place? Some years ago ter Haar [4]
wrote that in doing so, ‘one encounters serious difficulties’. Khintchin [5] seems to have been
the first to suggest performing time averages over a broad class of correlation functions. Later
Kubo [5] considered time averages more narrowly over response functions, that is, the dynamic
susceptibilities. In linear response theory, these functions are related to inelastic scattering
processes. Thus, by focusing on the time averages on them, one can gain the possibility of
tying ergodic behaviour to energy transfer mechanisms, something that is natural to physical
understanding.

By time averaging, Kubo deduced what has come to be known as Kubo’s ergodic condition.
That is, if the zero-frequency limit of a dynamic susceptibility is equal to its static counterpart,
the system is ergodic. In the 1970s, there were a number of studies on magnetic models testing
Kubo’s condition but the results were ambiguous. Although his idea was sound, Kubo also did
not have at his disposal a general solution to the Heisenberg equation. Thus, his performing
time averaging was merely formal, not actually taken over the time evolution itself, thus,
inevitably missing out on some essential factors as we shall see.

Let A be a dynamical variable in a many-particle system, defined by a Hamiltonian H .
As is known, A(t) the time evolution of A is obtained by solving the Heisenberg equation.
If A(t) were thus obtained for a given H , one could construct e.g. 〈A+(t)A〉 where + denotes
Hermitian conjugation and the brackets mean an ensemble average. Then by performing a
time average, one could see whether it is equal to 〈A+A〉. A straightforward operation is an
unambiguous way of testing the hypothesis. But this path has not been taken—recall the words
of ter Haar—because solving the Heisenberg equation has been a major challenge. But now
this direct path is open since the recurrence relations method [6] can give a general solution
for the Heisenberg equation.

Using this solution, we have recently carried out time averages on the response functions
and established an ergodic condition [7]. Therewith, we are able to connect ergodic or
nonergodic behaviour to the response of a system to an external perturbation. We also find
that irreversibility is a necessary but not sufficient condition for ergodicity. The same may be
said of the thermodynamic limit.

2. Ergodic hypothesis on response functions

We shall briefly summarize the response functions defined by linear response theory. Let us
assume H is Hermitian. Let our system be perturbed by an external probe h, such that the
interaction energy V = hA, where A is a dynamical variable of our system, through which
the probe is coupled. The total energy is thus Htot = H + V . If h is time independent, linear
response theory gives the static response function χA. If h is time dependent, it gives the
dynamic response function χA(t, t ′). If our system is causal and stationary, which we also
assume, χA(t, t ′) = χA(t − t ′), t > t ′. In particular it has the form

χA(t) =
{

i/βh̄〈[A+(t), A]〉 if t > 0

0 if t � 0,
(1)

where A(t) = exp itH/h̄A exp −itH/h̄, A = A(t = 0), β = 1/kT and the angular brackets
mean an ensemble average with respect to the states of H .
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The ergodic hypothesis (EH) applied to the response functions is as follows:

lim
1

T
T →∞

∫ T

0

∫ t

0
χ(t − t ′) dt ′ dt = χ, (2)

where the limit on T implies an irreversibility in the perturbed system after Boltzmann. By
introducing a second function R(t), with the properties dR(t)/dt = −χ(t) and dR(0)/dt = 0,
the lhs of equation (2) can be expressed as

χ̃ (0) + R(T ) − R̃(0)/T = χ, (3)

where T → ∞ is implied on the lhs and e.g. χ̃ (z) = L(z, t)χ(t), L is the Laplace transform
operator. We do not yet know whether equation (2) or its exact equivalent equation (3) is valid.
To show that, we shall compare it with an exact expression. Let us add one more property to
R(t): R(0) = χ . Assuming that such a function exists, we can arrive at the following:

χ̃ (0) + zR̃(z)|z=0 = χ. (4)

Equation (4) is exact since it follows from the definition of the function R(t). If equations (3)
and (4) are compared, clearly they do not agree. One must thus conclude that in general EH
cannot be valid, at least, as applied to the response functions.

If however R̃(0) is finite, the two equations can coincide, which gives an ergodic condition
in the form

0 <

∫ ∞

0
R(t) dt < ∞. (5)

The lower bound arises from the fact that ergodicity is a consequence of T → ∞, i.e.,
irreversibility. We shall later see that if R̃(0) = 0, there is a localization of energy. If
R̃(0) = ∞, there is also no delocalization of energy. At both limits, EH fails. If our condition
equation (5) is satisfied, it yields Kubo’s condition χ̃ (0) = χ . But Kubo’s condition does not
necessarily imply equation (5). We also note that irreversibility i.e. R(t) → 0 as t → ∞ is
only a necessary but not sufficient condition for ergodicity.

What is R(t)? The function R(t) which has the three key properties is the relaxation
function defined as follows:

RA(t) = (A(t), A), (6)

where the inner product means the Kubo scalar product (KSP), a generalized form of
fluctuations. In the theory of recurrence relations, the KSP realizes an inner product space.
It is thus sufficient to know the time evolution of A on this space to determine R(t). The
recurrence relations method [6] gives such a solution, given in section 3. In recent years many
have studied the relaxation function and its analogues like the memory function. We bring
attention to a few of the more germane ones albeit incomplete [8–22].

3. The recurrence relations method

The techniques of the recurrence relations method are well described in several places. There
are, in the literature, a number of exact or asymptotically exact solutions obtained by this
method. Here we will merely sketch the basic ideas behind the method as needed for obtaining
model-dependent solutions of the relaxation function R(t).

In a space S realized by KSP, A(t) is a vector, whose norm is an invariant of time,
i.e. ‖A(t)‖ = ‖A(0)‖. Then, as t → t ′, A(t) can change only the direction. The change
of the direction is determined by the Heisenberg equation of motion; hence, it is model
dependent. Because the length is fixed, the trajectory of A(t) is a continuous line drawn on the



4654 M H Lee

hypersurface of space S. Note that since S is not a Euclidean space, its shape is not necessarily
a hypersphere. The shape will depend explicitly on models themselves. The space is spanned
by d basis vectors: f0, f1, . . . , fd−1, which satisfy the orthogonality (fm, fm′) = 0 if m′ �= m.

These basis vectors may be constructed by the prescriptions of the method of recurrence
relations. The Gram–Schmidt process is possible but not helpful to do so as shown elsewhere.
The possible values for d are 2, 3, . . . ,∞. If d < ∞, A(t) is periodic, hence the limit T → ∞
is not possible, i.e. not irreversible. If d → ∞, A(t) is not periodic; hence, T → ∞ is possible.
If N < ∞, where N is the number of particles in a system, d < ∞. If N → ∞, d < ∞ or
d → ∞. For ergodic behaviour, d → ∞ is a necessary condition since then irreversibility is
possible. N → ∞ is also necessary if otherwise irreversibility does not develop.

Let us introduce r(t) = (A(t), A)/(A,A). The normalized relaxation function has a
continued fraction representation in the form

r̃(z) = 1/z + �1/z + · · · + �d−1/z, (7)

where �m+1 = ‖fm+1‖/‖fm‖, 0 � m � d − 1, known as the recurrants in the theory. Since
these recurrants are made up of the basis vectors, the shape of the realized model-specific
space is reflected in r̃(z). The hypersurface is denoted by σ = (�1,�2, . . .).

Now turning to EH, we let d → ∞ on the rhs of (7) and then let z → 0 to obtain an
expression for our ergodic condition (5): r̃(z = 0) ≡ W ,

W = �2 · �4 · �6 . . .

�1 · �3 · �5 . . .
, (8)

an infinite product like the famous one by Wallis. We can now restate our ergodic condition
as 0 < W < ∞, or r̃(0) or

∫ ∞
0 r(t) dt is finite. The three different ways are all equivalent,

of course, but depending on a problem we may find one way more easily calculated than the
others.

We can provide general physical mechanisms when EH is valid and when it is not. If the
energy transmitted to a system by a probe in an inelastic scattering process is localized to a
finite region of space or to a collective mode, then that system would not be ergodic, signified
by W = 0. If the energy is taken up by a dominant component of a system, it would also not
be ergodic signified by W = ∞. If the transmitted energy results in a coherent translation of
all particles in a system, W will turn out to be finite and the system ergodic.

Before turning to the electron gas models, we shall first illustrate three equivalent ways
of determining W. Suppose the hypersurface σ = (1, 4, 9, 16, 25, . . .) in some dimensionless
units for simplicity. For this set of recurrants, r(t) = sech t . The three different ways are

W = 22 · 42 · 62 . . .

12 · 32 · 52 . . .
(9a)

r̃(0) =
∫ ∞

0
sech t dt (9b)

∫ ∞

0
r(t) dt = 1/2{�(z/4 + 3/4) − �(z/4 + 1/4)}|z=0, (9c)

where �(z) = d/dz log �(z). Each of them yields π/2, the first being Wallis’ infinite product.

4. Density fluctuations in an electron gas

The general model for the electron gas is defined by the Hamiltonian

H =
∑

k

εka
+
k ak +

1

2

∑
k �=0

vkρ−kρk, (10)
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where a+
k and ak are respectively the creation and annihilation operators at wave vector k, vk

is the Coulomb interaction and ρk = ∑
q a+

q ak−q is the density fluctuation operator. For this
model, we shall take the dynamical variable to be the density fluctuation operator A = ρk .
We shall consider k 	 kF or k 
 kF, kF is the Fermi wave vector (more simply k → 0 or ∞
measuring in units of kF), and the space dimensions D to be 1, 2 or 3, for some of which we
know asymptotically exact forms for the relaxation function. Since our evaluations of W will
be for this dynamical variable, we can say whether a system is ergodic only with respect to it,
not about a system itself generally.

4.1. 1D ideal gas and Tomonaga–Luttinger model in the ground state

At long wavelengths, a perturbation of the ground state results in a small oscillation about the
Fermi surface [23]. Hence d < ∞. It is thus not ergodic with respect to this variable.

4.2. 2D ideal gas in the ground state

At long wavelengths and if vk = 0, it is known that d → ∞ [24]. The hypersurface is nearly
hyperspherical: σ = (2, 1, 1, 1, . . .), in units of 4k2ε2

F = 1, εF is the Fermi energy. This gives
r(t) = J0(2t), the Bessel function. We readily obtain

W = 1.1.1.1 . . .

2.1.1.1 . . .
= 1

2
.

The same value is obtained by the integral of J0(2t) and also from

r̃(z) = 1
/√

z2 + 4.

This model is ergodic with respect to the density fluctuation variable. As k → 0, the single
particles go into a coherent translation. By the thermodynamic equivalence, we can argue that
the same would apply to an ideal Bose gas in 2D [25].

4.3. Nonideal quasi-2D gas at the ground state

If vk = 2πe2/k, at long wavelengths the hypersurface is changed only slightly from the ideal
one [24]: σ = (2λ, 1, 1, 1, . . .), λ = 1 + (ωpl/k)2, ωpl is the classical plasma frequency.
Hence, W = 1/2λ, also found from

r̃(z) = 1/[(1/λ − 1)z + λ(z2 + 4)1/2].

Thus if λ < ∞, this model is ergodic with respect to ρk→0. At the lowest values of k, λ → ∞
because of the interaction; thus W → 0. The model ceases to be ergodic as localization sets in.
The transmitted energy goes into exciting the plasmon mode, leaving aside the single-particle
spectrum.

4.4. 3D ideal gas at the ground state

At the long wavelengths, the hypersurface shows a regular structure of the form σ =
(1/3, 4/3.5, 9/5.7, 16/7.9, . . .) in units 4k2ε2

F = 1 [26]. The infinite product although
seemingly intricate appears to be reducible to Wallis’ form. But it can be determined directly
from

r̃(z = 0) = arctan 1/z|z=0 = π/2.

That is, W = π/2. Evidently Wallis’ infinite product has another equivalent representation.
It is ergodic as the 2d ideal gas at long wavelengths.
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4.5. 3D nonideal gas at the ground state

If vk = 4πe2/k, the hypersurface at long wavelengths shows a change only in the first recurrant
[26]. That is, 1/3 → λ/3, where now λ = 1 + 3ω2

pl, ωpl is the classical plasma frequency in
3D. Thus, we can readily determine that W = π/2λ. The ergodic behaviour here is similar to
what we have shown for the 2D nonideal gas.

4.6. 3D nonideal gas at short wavelengths

If vk = 4πe2/k, the hypersurface when k 
 kF has a regular structure for one special value
of rS at about 3.5 [27], from which we obtain

W = (2.1).(2.2).(2.3) . . .

2s.2(s + 1).2(s + 2) . . .
,

where s = 3k2

16 〈KE〉|rS=3.5 = 0.2568k2, k in units of kF, 〈KE〉 is the average kinetic energy in
units of εF the Fermi energy. Since it is more difficult to handle the infinite product, we turn to

r̃(z) = z

2�(s)

∫ ∞

0

e−uus−1 du

u + z2/2
.

We observe that r̃(0) = 0 if the integral is finite. It is finite if s > 1, approximately k > 2kF .
At these very short wavelengths the system ceases to be ergodic, going into the localization
limit. It is not difficult to see the underlying physics. At these wave vectors the energy
transfers are a result of deep inelastic scattering processes. They probe very small regions of
space by confining the probe energy therein. When not delocalized, space averages are no
longer related to time averages.

4.7. 2D classical OCP with log potential

Only for a few special systems the hypersurface shows a regular structure with which to
determine r(t). For most it would not likely be possible. But one can determine whether d

is finite or not. If d → ∞, then one can go to Kubo’s condition directly to test ergodicity.
Classical OCP gases are possible examples.

One can generally write the frequency ω dependent susceptibility χk(ω) in terms of the
ideal one χo

k (ω) as follows [28]:

χk(ω) = χo
k (ω)

/[
1 − vk(1 − Gk(ω))χo

k (ω)
]
,

where Gk(ω) is the dynamic local field, an undetermined quantity. Now χo
k (ω) = V (2ω/k)χo

k ,
where χo

k is the ideal static susceptibility and V is the Vlasov function. The Vlasov function
behaves as V (x → 0) = 1 − 0(x2), where x → 0 means ω → 0 if k is fixed at some finite
value. One does not in general know the ω behaviour in Gk(ω). But in 2D with a log potential
and at � = 2, using the pair correlation function due to Jancovici [29], we know that

Gk(ω) = Gk + 0(ω2).

Thus, if k �= 0 or ∞, χk(ω = 0) = χk , hence ergodic.

5. Concluding remarks

We have demonstrated through a number of physical examples that it is possible to perform
time averages with which to compare the ensemble averages. It was an approach first seriously
undertaken by Kubo. But his work was limited owing to the fact that at his time a general
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solution to the Heisenberg equation was unavailable. We have shown that Kubo’s ergodic
condition is necessary but not sufficient. Irreversibility and even the thermodynamic limit
themselves alone cannot determine whether a system is ergodic. The sufficient condition for
ergodicity is finiteness of a uniquely defined infinite product denoted by W. The models of the
electron gas were used to illustrate this particular property.

Two important remarks should be made. As perhaps evident from our examples in
section 4, a model is not absolutely ergodic or not ergodic. It is with respect to a dynamical
variable with which time averages are being made. While at long wavelengths a dynamical
variable may lead to an ergodic behaviour, at short wavelengths it may not. Although not
shown in this work, one dynamical variable may make a model ergodic while another may
make the same model not so. Our examples are limited to a few exact or asymptotically exact
situations. But it is clear that if a model is ergodic with respect to a variable say at long
wavelengths, it is likely so also at somewhat different wavelengths. If, similarly, a model is
proved to be ergodic at the ground state, it is likely to remain so at near the ground state.

The ergodic hypothesis (EH), as stated at the outset, is a deep subject. Although our
analysis pertains only to the response functions, we believe we have made a first step in
providing both mathematical means and physical understanding with which to study EH in
many-body systems.

EH is also found in, e.g., nonlinear dynamics and chaos [30–33]. Here the systems have
few degrees of freedom (often one or two) and they are not in thermal equilibrium. Also the
dynamics are driven usually by ersatz equations of motion, some (discretized) self-similar
maps. The proper equation of motion for a many-body system, the Heisenberg equation, is
not self-similar except for some trivial models. Given these vast differences, it does not seem
likely that the ergodicity in nonlinear dynamics, say, could have much to do with the ergodicity
in statistical thermodynamics, the subject of our study. To our knowledge there are no proofs
that they are even equivalent.
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